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Quiz Results

Mean 56.1, std dev 14.2, max 95.5
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Questionnaire Results

• Some people want to see more demos

• Some people want to see more math

• Some people want to see more algorithms

A mini is quite short—can’t have more of everything…



Announcements

• Start HW3 (takes something like 50% longer than HW2)

• Yes, AWS takes a while to get used to

• Some past final exams have been posted (an additional one 
in recitation this Friday)

• Quiz regrades: due Monday 11:59pm



Deep Learning

• Inspired by biological neural nets but otherwise not the same 
at all (biological neural nets do not work like deep nets)

• Learns a layered representation

• Tries to get rid of manual feature engineering

“clown fish”

Learned

• Need to design constraints for what features are learned 
to account for structure in data (e.g., images, text, …)



Learning a neural net amounts to 
curve fitting

We’re just estimating a function



Neural Net as Function Approximation

def f(input):

Given input, learn a computer program that computes output

Single-layer neural net example:

this is a function

output = softmax(np.dot(input, W) + b)

return output
the only things that we are learning 
(we fix their dimensions in advance)

We are fixing what the function f looks like in code 
and are only adjusting W and b!!!



Neural Net as Function Approximation

output = softmax(np.dot(input, W) + b)

Given input, learn a computer program that computes output

Single-layer neural net example:

Two-layer neural net example:

layer1_output = relu(np.dot(input, W1) + b1)

output = softmax(np.dot(layer1_output, W2) + b2)

Learning a neural net: learning a simple computer program that maps 
inputs (raw feature vectors) to outputs (predictions)



Architecting Neural Nets
• Increasing number of layers (depth) makes neural net more 

complex
• Can approximate more functions
• More parameters needed

• More training data may be needed

• Designing neural net architectures is a bit of an art
• How to select the number of neurons for intermediate 

layers?
• Very common in practice: modify existing architectures 

that are known to work well (e.g., VGG-16 for computer 
vision/image processing)



Image analysis with 
Convolutional Neural Nets  

(CNNs, also called convnets)



filter

Slide by Phillip Isola

Convolution
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Convolution
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Note: output image is smaller than input image
If you want output size to be same as input, pad 0’s to input
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Convolution
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Convolution
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Very commonly used for:
• Blurring an image

• Finding edges
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(this example finds horizontal edges)
Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

convolve with 
each filter
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activation (e.g., ReLU)filters are actually unknown 
and are learned!



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 

and three 3x3 kernels

Input image

Output images



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 

and three 3x3 kernels

Input image

Stack output 
images into a 
single “output 
feature map”

dimensions: 
height, 
width

dimensions: 
height-2, 
width-2, 

number of kernels 
(3 in this case)



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 
and k 3x3 kernels

Input image

Stack output 
images into a 
single “output 
feature map”

dimensions: 
height, 
width

dimensions: 
height-2, 
width-2, 

k



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 
and k 3x3xd kernels

Input image

Stack output 
images into a 
single “output 
feature map”

dimensions: 
height, 
width, 

depth d (# channels)

dimensions: 
height-2, 
width-2, 

k
technical detail: there’s 

also a bias vector



Pooling

• Aggregate local information

• Produces a smaller image 
(each resulting pixel captures some “global” information)

• If object in input image shifts a little, output is the same



Max Pooling
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Max Pooling
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What numbers were involved in computing this 1?
In this example: 1 pixel in max pooling output 

captures information from 16 input pixels!
Example: applying max pooling again results in a 

single pixel that captures info from entire input image!



Max Pooling and (Slight) Shift Invariance

1 0

0 0
1max pooling 

(2-by-2)

1
0 1

0 0 max pooling 
(2-by-2)

0 0

1 0
1max pooling 

(2-by-2)

0 0

0 1
1max pooling 

(2-by-2)

Small shift 
of object in 

input 
image 

results in 
same 
output



Max Pooling and (Slight) Shift Invariance

1 0

0 0

1 0 0

0 0 0

0 0 0

1max pooling 
(2-by-2)

0max pooling 
(2-by-2)

Big shift in input can still change output

0 0 1

0 0 0

0 0 0



Basic Building Block of CNN’s

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 

and k kernels

Input image
max pooling 

(applied to each 
image in stack)

stack of images

output stack of 
smaller images



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image
dense layer with 

10 neurons, 
softmax activation

Training label: 6

Loss/“error” error
Popular loss function for 

classification (> 2 classes): 
categorical cross entropy

Error is 
averaged 

across training 
examples

dense layer 
with 512 

neurons, ReLU 
activation

1
Pr(digit 6)log

Learning this neural net 
means learning parameters 

of both dense layers!



Handwritten Digit Recognition

dense, 
softmax

Training label: 6

Loss/“error” error

28x28 image conv2d, 
ReLU

max 
pooling

2d



Handwritten Digit Recognition

28x28 image dense, 
softmax

Training label: 6

Loss

error

conv2d, 
ReLU

max 
pooling

2d

conv2d, 
ReLU

max 
pooling

2d

extract low-level visual 
features & aggregate

extract higher-level visual 
features & aggregate

non-vision-specific 
classification neural net



CNN Demo



CNN’s

• Learn convolution filters for extracting simple features

• Max pooling summarizes information and produces a smaller 
output and is invariant to small shifts in input objects

• Can then repeat the above two layers to learn features from 
increasingly higher-level representations


